로그인 회원가입 고객센터
레포트자기소개서방송통신서식공모전취업정보
카테고리
카테고리
카테고리
카테고리
campusplus
세일즈코너배너
자료등록배너

베이즈데이터분석 2024년 2학기 방송통신대 기말과제물)밀도함수를 고려하자. 중요도 추출 방법을 이용하여 밀도함수 의 기댓값을 구하려고 한다. 마르코프체인 스탠 R코드 시계열 자기


카테고리 : 레포트 > 자연과학계열
파일이름 :베이즈데이터분석 2024-2-기말.zip
문서분량 : 15 page 등록인 : sunnyfanta
문서뷰어 : 압축유틸프로그램 등록/수정일 : 24.11.09 / 24.11.09
구매평가 : 다운로드수 : 2
판매가격 : 15,000

미리보기

같은분야 연관자료
베이즈데이터분석 2024년 2학기 방송통신대 중간과제물)현재 대한민국에서 코로나19 바이러스 보균자는 전체 인구의 5%... 8 pages 15000
2023년 2학기 방송통신대 베이즈데이터분석 기말과제물)밀도함수를 고려하자. 여기서 상수 이다. 다음의 질문에 답하시오... 15 pages 20000
2023년 2학기 방송통신대 베이즈데이터분석 중간과제물)다음은 2014년 군에 입대하는 10명의 병사들의 몸무게를 잰 ... 10 pages 20000
2022년 2학기 방송통신대 베이즈데이터분석 기말과제물)밀도함수를 따르는 랜덤 숫자를 합격-불합격 방법으로 생성하고자 ... 4 pages 15000
보고서설명
- 교재를 중심으로 다양한 문헌을 참고하여 쉽고 자세한 설명을 담아 정성을 다해 상세하게 작성하였습니다(베이즈데이터분석.Rmd, 베이즈데이터분석.html, 베이즈데이터분석.pdf 첨부).
- 한눈에 내용이 들어올 수 있게 가독성을 고려하여 일목요연하게 작성하였습니다.
- 한글맞춤법을 준수하였습니다.

바쁜 일상 속에서 양질의 리포트를 작성하시는 데, 시간과 노력을 최소화할 수 있는 과제물로 리포트 작성에 참고하시어 좋은 성적 받으세요.^^

글자 모양(맑은고딕, 장평 100%, 크기 11 pt, 자간 0%)

과제 스트레스 싹~ 학점 쑥!
본문일부/목차
목차

목차생략


본문일부

베이지안 추론의 핵심은 관측값이 주어졌을 때 모수 θ의 사후분포를 구하는 것이다. 그러나 모형이 복잡하거나 모수의 수가 많으면 θ를 수리적으로 구할 수 없다. 따라서 사후분포의 사후평균, 사후분산, 특정 사건에 대한 사후확률 등을 근사적으로 계산할 필요가 있다. 이때 사후분포의 특성을 근사적으로 구하기 위해 마르코프 체인 몬테칼로(Markov Chain Monte Carlo, MCMC) 기법이 많이 사용된다. MCMC 기법은 마르코프체인을 이용하여 사후분포로부터 표본을 생성하고 이 사후표본을 사용하여 사후추론을 수행하는 방법이다. 깁스 추출법, 메트로폴리스-헤이스팅스 알고리듬, 해밀턴 몬테 카를로 등이 대표적인 MCMC 기법이다.

단순한 모델의 경우 R의 기본적인 함수(lm, glm 등)를 사용하여 매개변수를 추정할 수 있고, 복잡한 모델의 경우에도 기존 R 패키지를 사용하면 문제를 해결할 수 있는 경우도 있다. 그러나 패키지와 함수별로 사용 방법이 달라서 이를 충분히 인지해야 하고, 패지지와 함수 중에서 적절한 모델을 찾는 노력도 중요하다. 특히 적절한 모델 지원이 되지 않는 경우에는 분석 자체를 진행할 수 없게 된다. 이처럼 R 패키지가 모델 확장 성이 낮다는 단점에 대응하기 위해 등장한 것이 Stan, WinBUGS, JAGS 등의 확률적 프로그래밍 언어라고 할 수 있다.

Stan은 앤드류 겔만, 밥 카펜터, 대니얼 리 등이 2012년부터 깃허브에서 개발하고 있는 확률적 프로그래밍언어이다. WinBUGS나 JAGS처럼 사후분포에서 표본을 추출한다. R인터페이스인 rstan과 함께 python과 matlab 인터페이스도 공개되어 있다. Stan은 추정 계산 알고리즘으로 해밀토니안 몬테칼로(HMC)의 한 버전인 NUTS(No-U-Turn Sampler)를 사용한다. NUTS는 매개변수의 수가 많아도 효과적으로 표본을 추출한다. Stan은 WinBUGS나 JAGS와 달리 복잡한 모델에서도 상당히 정상적으로 표본을 추출할 수 있다. Stan에서는 추정계산에 변분 베이즈법의 한 버전인 자동 미분 변분 추정(ADVI)을 사용할 수도 있다.


참고문헌

이재용·이기재(2022), 베이즈 데이터 분석, 한국방송통신대학교출판문화원.
마쓰우라 겐타(2019), 데이터 분석을 위한 베이지안 통계 모델링 with Stan & R, 길벗.
존 크러슈케(2018), R, JAGS, Stan을 이용한 베이지안 데이터 분석 바이블 2판, 제이펍.
Stan User’s Guide(https://mc-stan.org/docs/stan-users-guide/index.html)
연관검색어
방송통신대베이즈데이터분석

구매평가

구매평가 기록이 없습니다
보상규정 및 환불정책
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시
환불(재충전) 해드립니다.  (단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.

저작권안내

보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기

 

⼮üڷٷΰ ⸻ڷٷΰ thinkuniv ķ۽÷