로그인 회원가입 고객센터
레포트자기소개서방송통신서식공모전취업정보
campusplus
세일즈코너배너
자료등록배너

자연언어처리 2024년 2학기 방송통신대 중간과제물)7강까지 학습한 모델(또는 알고리즘) 중 하나를 적용한 논문을 찾아서 그 논문에서 모델이 어떻게 사용되었는지를 아래와 같은 가이


카테고리 : 레포트 > 자연과학계열
파일이름 :자연언어처리 2024-2-중간.hwp
문서분량 : 7 page 등록인 : sunnyfanta
문서뷰어 : 한글뷰어프로그램 등록/수정일 : 24.09.17 / 24.10.04
구매평가 : 다운로드수 : 0
판매가격 : 7,000

미리보기

같은분야 연관자료
방송통신대학교/자연언어처리와 컴퓨터언어학에 대해 간략히 서술하시오... 6 pages 2000
교양 - 언어의이해b - 자연언어처리와 컴퓨터언어학에 대해 간략히 서술하시오... 6 pages 3900
#메이플스토리 경매장 #주흔 낚시꾼들꺼 사재기.zip #주흔낚시꾼 낚기 #9999개 600만 이득... 1 pages 5000
[언어의이해B형]자연언어처리와 컴퓨터언어학에 대해 간략히 서술하시오(30점). [교재 제14장과 교재 14... 13 pages 5000
보고서설명
- 7강까지 학습한 모델 중 fastText모델을 적용한 논문을 찾아 그 논문에 근거하여 쉽고 자세한 설명을 담아 정성을 다해 명확하게 작성하였습니다.
- 모델을 적용해서 해결하고자 한 문제, 논문에서 사용한 데이터, 모델 학습과정, 모델에 대한 평가, 인사이트 등 과제가 포함해야 하는 내용을 모두 담아서 상세하게 작성하였습니다.
- 과제물 지시사항에 따른 형식과 내용으로 완벽하게 작성하였습니다.
- 한눈에 내용이 들어올 수 있게 가독성을 고려하여 일목요연하게 작성하였습니다.

바쁜 일상 속에서 양질의 리포트를 작성하시는 데 시간과 노력을 최소화할 수 있는 과제물로 리포트 작성에 참고하시어 좋은 성적 받으세요.^^

글자 모양(맑은고딕, 크기 11 pt, 줄간격 160%, 장평 100%, 자간 0%)

행복하세요~
본문일부/목차
목차

7강까지 학습한 모델(또는 알고리즘) 중 하나를 적용한 논문을 찾아서, 그 논문에서 모델이 어떻게 사용되었는지를 아래와 같은 가이드라인을 따라 기술하시오. 단, 강의에서 레퍼런스가 언급된 논문들은 대상에서 제외할 것.

1. 논문의 레퍼런스

2. 해당 논문 또는 논문의 레퍼런스에 접근할 수 있는 링크 주소

3. 논문을 읽고 아래와 같은 항목들에 대한 내용을 작성할 것. 논문에서 특정 항목 관련 내용을 찾을 수 없는 경우에는 해당 내용이 논문에 기술되어 있지 않다고 작성해도 무방함.

(1) 모델을 적용해서 해결하고자 한 문제가 무엇인지 서술하시오.
(2) 논문에서 사용한 데이터에 관해 서술하시오.
(3) 모델 학습은 어떻게 진행했는지 서술하시오.
(4) 모델에 대한 평가는 어떤 지표(metric)를 사용하였고 평가 결과는 어떻게 나왔는지 서술하시오.

4. 참고문헌


본문일부

7강까지 학습한 모델(또는 알고리즘) 중 하나를 적용한 논문을 찾아서, 그 논문에서 모델이 어떻게 사용되었는지를 아래와 같은 가이드라인을 따라 기술하시오. 단, 강의에서 레퍼런스가 언급된 논문들은 대상에서 제외할 것.

1. 논문의 레퍼런스

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.

2. 해당 논문 또는 논문의 레퍼런스에 접근할 수 있는 링크 주소

https://arxiv.org/pdf/1607.01759

3. 논문을 읽고 아래와 같은 항목들에 대한 내용을 작성할 것. 논문에서 특정 항목 관련 내용을 찾을 수 없는 경우에는 해당 내용이 논문에 기술되어 있지 않다고 작성해도 무방함.

(1) 모델을 적용해서 해결하고자 한 문제가 무엇인지 서술하시오.

이 논문은 웹 검색, 정보 검색, 감정 분석과 같은 애플리케이션에서 자연어 처리의 필수 작업인 텍스트 분류 문제를 다룬다. 저자들은 신경망 기반 모델은 정확하지만 훈련과 테스트 단계 모두에서 계산 비용이 많이 들고 느린 경향이 있기 때문에, 대규모 데이터 세트를 처리할 수 있는 확장 가능하고 효율적인 모델이 필요하다고 지적한다. 특히 수십억 개의 단어 또는 수만 개의 분류 범주와 같은 방대한 데이터 세트가 포함된 작업에는 한계가 있다.

이 논문에 적용된 모델인 fastText는 높은 정확도를 유지하면서 텍스트 분류의 계산 비효율성 문제를 해결하도록 설계되었다. 저자들이 이 모델을 선택한 이유는 선형 분류기의 단순성과 n-그램 특징 및 계층적 소프트맥스 사용과 같은 추가 전략을 결합하여 큰 출력 공간을 처리하기 때문이다. 이러한 방법을 통해 fastText는 기존 딥러닝 분류기보다 훨씬 더 빠른 속도를 낼 수 있으며, 정확도 측면에서 큰 비용 없이 매우 큰 데이터 세트를 짧은 시간에 학습할 수 있다. 이 모델은 계층적 소프트맥스 및 백 오브 워드 접근 방식과 n-그램 특징을 통해 분류 작업을 위한 관련 언어 패턴을 캡처하면서 대규모 데이터 세트로 확장하는 데 적합하다.


참고문헌

Bag of Tricks for Efficient Text Classification
(https://arxiv.org/pdf/1607.01759)
파이썬 텍스트 마이닝 완벽 가이드(자연어 처리 기초부터 딥러닝 기반 BERT와 트랜스포머까지), 박상언·강주영, 위키북스, 2023.
연관검색어
방송통신대자연언어처리

구매평가

구매평가 기록이 없습니다
보상규정 및 환불정책
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시
환불(재충전) 해드립니다.  (단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.

저작권안내

보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기

 

⼮üڷٷΰ ⸻ڷٷΰ thinkuniv ķ۽÷