리만 가설에 관하여
. 머리말
소수는 수 중에서 가장 기본이 되는 수이다. 소수로써 거의 모든 수를 설명할 수 있기 때문이다. 오래 전부터 위대한 수학자들은 소수의 신비와 분포에 관하여 연구하여 왔다.𠌓년에 리만1)은 베를린 학술원의 회원으로 선정되었다. 베를린 학술원의 헌장에 의하면, 새로이 선출된 회원은 반드시 최근의 연구업적을 보고하게 되어 있었다. 그래서 리만은 『주어진 수보다 작은 소수의 개수에 관하여 (On the number of primes less than a given magnitude)』의 제목으로 보고서를 학술원에 제출하였다.(참고문헌 [12] 참조) 그는 이 보고서에서 리만 제타함수의 성질들을 열거하고 소위, “리만 가설 (the Riemann Hypothesis)”을 제시하였다.
이미 이 전에 소수의 분포에 관하여 오일러2), 르장드르3), 가우스4) 등의 위대한 수학자에 의하여 연구되었다. 오일러는 소수의 분포를 연구하기 위하여 아래의 제타함수
(1)
를 공부하였다. 그는
(2)
의 관계식을 보였다. 여기서 는 모든 소수 들의 곱을 나타낸다. 관계식 (2)는 「오일러 곱(Euler product)」이라고 불린다. 이 사실로부터 소수의 개수가 무한임을 알 수 있다. 를 주어진 양의 실수라고 하고
라고 하자. 여기서 는 모든 자연수들의 집합을 나타내고 는 집합 의 개수를 나타낸다. 오일러는
(3)
이라는 것을 가설로 제시하였다. 오일러, 르장드르, 가우스와 같은 위대한 수학자들이 (3)을 증명하려고 시도하였지만 실패하였다. 1854년에 체비쉐프5)는 논문집 『Memoires de l’Academie des Sciences de Saint Petersburg』에서
(4)
의 등식을 증명하였다. (단, 그러나 체비쉐프는 (3)의 극한값이 존재한다는 사실은 증명하지 않았다.
𠌊년경에 리만은 (1)에서 실수 변수뿐만 아니라 복소수 변수까지 생각하였다. 그는을 만족하...
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기