5. 문제점 연구배경 및 목적
기존의 도시성장 모델이 단순한 규칙을 바탕으로 수많은 반복을 통해 모델을 이루는 적합한 계수를 찾는 형식
공간 데이터 마이닝 기법을 통해 데이터 간에 내재되어 있는 규칙을 찾고 이를 새로운 데이터에 반영하여 예측
일정 패턴을 정해 놓고 맞추어 나가는 것보다는 실제 데이터에서 규칙을 찾아내 적용하는 것이 더 현실적인 방법
Background
도시성장 모델의 예 (UGM)
USGS, UCSB(Keith C. Clarke)
구조
Cellular Automata, terrain mapping, land cover deltatron modeling
Background
데이터 마이닝
KDD(knowledge Discovery on Database) 의 핵심이 되는 단계
Background
공간 데이터 마이닝
함축적인 지식추출, 공간관계 혹은 공간 데이터베이스 상에 명백히 저장되어 있지 않은 다른 패턴들을 추출하는 것
Background
시공간 데이터
지리영역에서의 변화 이미지 시퀀스
시간에 따라 각 객체의 위치와 이동이 있는 데이터
자연 현상에 있어서의 변화를 묘사하는 데이터
본 연구를 위한 시공간 데이터 : 시간의 추이에 따른 도시역의 확장
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기