1. 목적
2. 실험기기
3. 실험 방법
4. 관계이론
■유한요소법■
■범함수■
큰 구조물을 만드는 경우에 작은 구조물들을 적당히 결합함으로써 그 구조물을 완성할수 있다는 생각은 구조공학자에게 지극히 자연스러운 것이다. 이러한 생각을 수학에 전이시킨 것이 유한 요소법이다. 유한요소법은 1950년대에 경계값 문제의 근사해를 구하는 중요한 방법 중의 하나로 부상했다. 그러나 1960년대 말까지만 하더라도 유한요소법에 대한 공학 논문은 많이 발표되었으나 수학 논문은 많지 않았다. 1970년대에 비로소 이 방법의 장점과 수학적 아름다움이 발견되고, 이와 관련되 보간이론, spline, 미분방정식과 더불어 유한요소법은 수학 세계에서 인정받게 되었다. 오늘날 유한 요소법의 이론은 적어도 선형 경계값 문제에 대하여는 상당한 수준에 올라있으며, 이의 수학적 기초는 spline 이론과 근대 편미분방정식 이론과의 자연스런 합작품으로 인정받고 있다. 또 유한요소법은 최근에 수치해석 분야에서 그 중요성의 인식이 증가되고 있으며, 이의 응용은 계산 방법이나 소프트웨어의 개발에 대한 자극제가 되고 있다. 수학에서의 유한요소법은 미분방정식 문제를 변형된 형태로 바꾸고, 이것의 해를 어떤 함수들의 일차결합으로 나타내려는 Ralyeigh-Ritz-Galerkin의 생각을 이용하여 근사해를 구하는 변분법의 하나이다.
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기