-

미리보기는
3 페이지 까지 제공됩니다.
-
판매가격
12,700원
- 같은분야 연관자료
-
- 보고서설명
- 제1부 통계 데이터 이해하기
제1장 기초 통계량 살펴보기
제2부 확률론
제2장 확률의 개념과 연산
제3장 베이지안 이론, 확률변수와 분포
제3부 확률분포
제4장 이산형 확률분포
제5장 연속형 확률분포
제4부 모집단과 표본
제6장 모집단과 표본의 관계
제7장 표본분포
* 각 장별 출제예상문제 제공 + 해설포함 *
- 본문일부/목차
- 제1부 통계 데이터 이해하기
제1장 기초 통계량 살펴보기
1. 데이터의 시각화
1) 표를 이용한 데이터 보여주기
① 수치 데이터를 요약하는 보편적인 방법으로 널리 사용되는 것은 표를 이용하는 방식임
② 다양한 형태의 데이터를 2차원 테이블 형식으로 표현하는 표는 가장 빈번하게 대하는 통계 데이터의 형식이라 할 수 있음
2) 그래프를 이용한 데이터 보여주기
그래프들은 다양한 형태로 서로 다른 값을 보여 주고 있는 듯하지만, 그 형태를 바꾸었을 뿐 동일한 데이터임
여러 가지 형태의 그래프 유형이 다양한 데이터를 시각화하는 데 사용됨
2. 데이터의 속성을 나타내는 값
1) 데이터의 속성을 표현하는 지표
① 데이터의 속성을 표현하기 위해서 통상 두 종류의 지표를 사용
② 하나는 대표값이고, 또 다른 하나는 산포도임
③ 대표값이란 데이터를 대표할 수 있는 값을 의미하는 것으로, 해당 데이터를 잘 나타낼 수 있는 하나의 숫자를 의미함
④ 이는 데이터의 속성을 반영하여 하나의 숫자로 표현하는 것으로, 가장 대표적인 것으로는 평균, 중위수, 최빈값 등을 들 수 있음
⑤ 또 다른 데이터 속성 표현 지표로는 산포도라는 개념이 있음
⑥ 이는 문자 그대로 퍼짐의 정도를 나타내는 지표를 의미함
⑦ 데이터가 특정 값을 기준으로 모여 있는지, 또는 흩어져 있는지의 정도를 나타내는 지표임
⑧ 흩어져 있을수록 이질적인 데이터이며, 모여 있을수록 동질적인 데이터라 할 수 있음
⑨ 주로 사용하는 산포도로는 범위, 분산, 표준편차 등이 있음
⑩ 대표값과 산포도의 두 가지 지표를 합해서 제공할 때가 많고, 데이터 사용자 입장에서도 이 두 가지 지표를 동시에 고려했을 때 해당 분포의 형태를 보다 더 구체적으로 파악할 수 있게 됨
⑪ 하나의 분포를 표현할 때는 대표값과 산포도의 두 종류 지표를 함께 제시하는 것이 통상적인 방법임
2) 대푯값
① 평균
평균은 앞서 설명한 바와 같이 산술평균만 존재하는 것은 아니며 우리가 흔히 말하는 평균은 산술평균을 의미하지만, 실제로는 다양한 형태의 평균이라는 개념이 존재함
② 산술평균
산술평균은 데이터 전체를 합한 후에 이를 전체 관찰값 수로 나눈 것이라 정의할 수 있음
③ 가중평균
- 관찰하여 얻은 각각의 관찰값이 그 중요성이 서로 다른 경우라면, 위에서 계산한 것과 같은 산술평균과는 조금 다른 방식으로 평균을 구해야 할 필요가 있음
- 가중평균이란 각 데이터의 ‘중요성을 반영’하여 평균값을 구하는 경우를 말함
- 근본적으로 동일 단위에서 다룬다면 산술평균과 가중평균은 동일한 값이라는 점을 유념할 필요가 있음
④ 조화평균
- 조화평균은 평균 속도를 구할 때 주로 사용하는 측도임
- 일반적으로 조화평균은 각 관찰값의 역수를 찾아내서 이들의 산술평균을 구한 후에, 다시 이 값의 역수를 취하여 산출함
⑤ 기하평균
- 조금 독특한 성질을 지닌 데이터가 있음
- ‘물가 인상률’이나 ‘수익률’과 같이 연속적으로 변화하는 비율 데이터가 이 경우에 해당함
⑥ 중위수
- 중위수는 관찰된 데이터를 크기순으로 나열했을 때, 한가운데 위치한 값을 의미함
- 데이터의 개수가 홀수라면 한가운데 값을 찾는 것이 용이함
- 가운데 값이 두 개가 되는 셈인데, 이런 경우는 (가운데에 위치한)두 값의 산술평균을 계산해서 중위수로 삼음
- 중위수는 이렇게 산술평균이 극단적인 값에 따라 영향을 크게 받는 약점을 피하기 위해 사용되는 대푯값임
⑦ 최빈값
- 최빈값이란 관찰된 데이터 중에서 가장 빈번하게 발견되는 값임
- 관찰값이 반복적으로 발견되는 경우는 의외로 자주 발견됨
- 실제로 모드라는 표현은 일상 속에서 자주 사용되는 말임
- 최빈값은 데이터에서 가장 비중이 큰 값이 어떤 것인지를 알려 주는 값으로 데이터의 대표값 역할을 충분히 할 수 있으며, 중위수와는 또 다른 의미에서 산술평균의 단점을 보완해 주는 역할을 수행함
⑧ 미드레인지
- 수집된 데이터에는 가장 큰 값과 가장 작은 값이 있기 마련이며 이 최대값과 최소값의 차이를 ‘범위’라고 함
- 범위는 수집된 데이터가 어디서부터 어디까지 분포해 있는지를 확인하기 위해 중요한 의미가 있음
- 그러나 범위의 개념은 데이터가 얼마나 퍼져 있는지에 대한 관점이므로 대표값의 개념과는 약간 다름
- 대신에 하나의 대표값으로 사용하기 위해서 최대값과 최소값을 활용하는 경우가 있음
- 범위는 수학적으로 최대값에서 최소값을 뺀 값을 의미하는데, 최대값과 최소값을 찾아내고 이 두 값의 산술평균을 구하여 이를 미드레인지라는 개념으로 중심위치에 대한 측도로 삼는 것임
- 최빈값의 경우에도 대부분의 데이터가 가리키는 값이 최빈값인 데 비해 아주 동떨어진 데이터 하나로 인해 평균이 극단적으로 한쪽으로 치우치는 현상을 보인다면, 최빈값을 중심위치의 대표값으로 사용하는 것이 더 옳은 방법일 수 있다는 점임
- 가장 이상적인 것은 산술평균과 중위수, 최빈값 등이 동일한 경우를 들 수 있음
- 실제로 정규분포가 이런 특성을 갖는데, 여러 가지 중심위치 대표값들이 일치하는 경우 가장 타당한 데이터 수집이 이루어졌다고 말할 수 있음
- 중심위치에 관한 대표값들은 어느 하나가 우월하다고 할 수 없고 나름의 장단점이 있으므로 데이터의 특성을 감안하여 적절한 중심위치 대표값을 사용할 수 있어야 함
- 중략 -
- 연관검색어
-
#경영분석을위한기초통계
- 보상규정 및 환불정책
-
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시
환불(재충전) 해드립니다. (단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다.
저작권침해신고 바로가기