1. 고대 그리스 수학에서 유클리드와 아르키메데스의 수학사적 의의를 서술하시오.
2. 3차 방정식 근의 발견문제는 오늘날 카르다노에게 그 공을 돌리고 있는데 그 이유는?
3. 메넬라우스 정리를 이용하여 체바의 정리를 증명하라.
과제물 꼼꼼하게 정성을 들어 작성했습니다.
제 자료가 구입자분에게 꼭 필요한 내용이 되었으면 좋겠어요.
위 자료 요약정리 잘되어 있으니 잘 참고하시어
학업에 나날이 발전이 있기를 기원합니다 ^^
구입자 분의 앞날에 항상 무궁한 발전과 행복과 행운이 깃들기를 홧팅^^
본문일부/목차
1. 고대 그리스 수학에서 유클리드와 아르키메데스의 수학사적 의의를 서술
1) 유클리드의 수학사적 의의
bc300년~bc350년경의 그리스의 수학자이고, 유클리드기하학의 대성자이다. 유클리드는 수학교육을 이끈 수학자이기도 하고, 알렉산드리아에서 포톨레마이오스 1세에게 수학을 가르쳤다. 그리스기하학, 즉 ‘유클리드기하학’의 대성자이다. 그의 일생에 관해서는 알렉산드리아에서 프톨레마이오스 1세에게 수학을 가르쳤다는 것 외에는 확실한 것이 없다. 그의 저서 《기하학원본(기하학원론) Stoikheia》(13권)은 플라톤의 수학론을 기초로 한 것으로, 그 이전의 수학(기하학)의 업적을 집대성함과 동시에 계통을 부여하여 상당히 엄밀한 이론체계를 구성하였다. 기하학에 있어서의 경전적 지위를 확보함으로써 유클리드라 하면 기하학과 동의어로 통용되는 정도에 이르고 있디. 그 밖에 현존하는 저서로는 《보조론》, 《도형의 분할에 대하여》가 있으며 응용수학서로는 《구면천문학》, 《광학과 반사광학》, 《음정구분과 화성학입문》이 있다.
1. 고대 그리스 수학에서 유클리드와 아르키메데스의 수학사적 의의를 서술
1) 유클리드의 수학사적 의의
2) 아르키메데스의 수학사적 의의
2. 3차 방정식 근의 발견문제는 오늘날 카르다노에게 그 공을 돌리고 있는데 그 이유는?
3. 메넬라우스 정리를 이용하여 체바의 정리를 증명하라
1) 메넬라우스의 정리
2) 메넬라우스의 정리의 증명
(2) 메넬라우스의 정리를 이용한 체바의 정리 증명
참고문헌
1. 김용찬, 수학의 원리는 아름답다, 영남대학교출판부, 2008.
2. 김수경, 유클리드 기하학과 고등학교 기하영역의 비교분석 연구, 한서대 교육대학원 석사학위논문, 2009.
3. 박병호, 논증기하와 삼각형의 오심’. 2003. 홍익대 교육대학원 논문
4. 배종수, 신항균, 현대수학의 이해, 경문사, 2010
5. 오주현, 카르다노 3차방정식의 해에 대한 이해, 한남대 교육대학원 석사학위논문, 2008.
6. 이선영, 수학사를 활용한 미적분학 지도에 관한 연구, 군산대 교육대학원 석사학위논문, 2007.
7. 찰스 밴 도렌, 박중서 역, 지식의 역사, 갈라파고스, 2010
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기