문단 모양(왼쪽 여백 0, 오른쪽 여백 0, 줄간격 160%)
글자 모양(굴림체, 장평 100%, 크기 11 pt, 자간 0%)
행복하세요, Now!
본문일부/목차
목차
1. (10점) 밀도함수를 따르는 랜덤 숫자를 합격-불합격 방법으로 생성하고자 한다. 다음의 질문에 답하시오.
(a) 밀도함수의 개형을 R을 이용해 그리시오.
(b) 의 최대값을 구하시오.
(c ) 를 제안밀도함수로 하여 합격-불합격 방법 알고리듬을 서술하시오.
(d) 위에서 서술한 알고리듬으로 5000개의 랜덤표본을 R을 이용해 에서 추출하고, 히스토그램을 그리시오. 표본평균과 표본 표준편차를 구하시오.
위의 데이터가 를 따른다고 하자. 각 모수의 사전분포가 를 따른다고 할 때, 스탠을 이용하여 사후표본을 추출하고자 한다. 다음의 질문에 답하시오.
(a) 스탠을 이용하여 번인 5000개를 포함하여 총 15,000개의 사후표본을 추출하시오.
(b) 모수들의 사후표본의 밀도함수 그림, 시계열 그림, 자기상관계수 그림을 그리고 마르코프 체인이 수렴했는지 판단하시오. 수렴하지 않았다고 판단하면 수렴했다고 판단할 때까지 사후표본의 크기를 늘리시오.
(c) 모수들의 사후평균, 사후표준편차, 95% 신용구간을 구하시오.
(a) 위 데이터의 산점도를 그리시오.
(b) 위 모형을 적합하기 위한 스탠과 R 코드를 작성하고, 사후표본을 구하시오.
(c) 모수들의 사후표본의 밀도함수 그림, 시계열 그림, 자기상관계수 그림을 그리고 마르코프 체인이 수렴했는지 판단하시오. 수렴하지 않았다고 판단하면 수렴했다고 판단할 때까지 사후표본의 크기를 늘리시오.
(d) 의 베이즈 추정량을 구하고, 기록의 예측식을 써라.
(e) 의 95% 신용구간을 구하라.
(f) 1라운드 기록이 84인 남성이 있었다고 한다. 이 남성의 2라운드 기록을 예측해보시오. 이 남성의 2라운드 기록의 베이즈 추정량을 구하고, 95% 예측구간을 구하시오. 확률변수의 신용구간은 예측구간이라 한다.
5. 참고문헌
본문일부
베이지안 추론의 핵심은 관측값이 주어졌을 때 모수 의 사후분포를 구하는 것이다. 그러나 모형이 복잡하거나 모수의 수가 많으면 를 수리적으로 구할 수 없다. 따라서 사후분포의 사후평균, 사후분산, 특정 사건에 대한 사후확률 등을 근사적으로 계산할 필요가 있다. 이때 사후분포의 특성을 근사적으로 구하기 위해 마르코프 체인 몬테칼로(Markov Chain Monte Carlo, MCMC) 기법이 많이 사용된다. MCMC 기법은 마르코프체인을 이용하여 사후분포로부터 표본을 생성하고 이 사후표본을 사용하여 사후추론을 수행하는 방법이다. 깁스 추출법, 메트로폴리스-헤이스팅스 알고리듬, 해밀턴 몬테 카를로 등이 대표적인 MCMC 기법이다.
단순한 모델의 경우 R의 기본적인 함수(lm, glm 등)를 사용하여 매개변수를 추정할 수 있고, 복잡한 모델의 경우에도 기존 R 패키지를 사용하면 문제를 해결할 수 있는 경우도 있다. 그러나 패키지와 함수별로 사용 방법이 달라서 이를 충분히 인지해야 하고, 패지지와 함수 중에서 적절한 모델을 찾는 노력도 중요하다. 특히 적절한 모델 지원이 되지 않는 경우에는 분석 자체를 진행할 수 없게 된다. 이처럼 R 패키지가 모델 확장성이 낮다는 단점에 대응하기 위해 등장한 것이 Stan, WinBUGS, JAGS 등의 확률적 프로그래밍 언어라고 할 수 있다.
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기