현대인들은 일상생활에서 도서, 드라마, 음악, 영화, 음식, 상품, 식당, 패션 아이템 등 다양한 대상들을 추천받고 있다. 일상생활에서 추천은 사용경험을 공유하는 행위이다. 추천은 특정 대상을 선택하려 할 때 선택에 도움이 되기도 한다. 하지만 별다른 요구가
본문일부/목차
1. 개인별 AI 추천 알고리즘의 원리
2. 개인별 AI 추천 알고리즘의 장점
3. 사용 현황
4. 문제점
참고문헌
1. 개인별 AI 추천 알고리즘의 원리
현대인들은 일상생활에서 도서, 드라마, 음악, 영화, 음식, 상품, 식당, 패션 아이템 등 다양한 대상들을 추천받고 있다. 일상생활에서 추천은 사용경험을 공유하는 행위이다. 추천은 특정 대상을 선택하려 할 때 선택에 도움이 되기도 한다. 하지만 별다른 요구가 없는 상황에서 추천을 받을 수도 있다. 추천은 상대의 취향을 고려하기도 하고 때로는 고려하지 않기도 한다. “일반적인 추천시스템은 사용자의 과거 히스토리에 기반을 두어 사용자 프로파일을 생성하고, 이 프로파일 정보를 통해 다른 유사한 사용자들이 좋아한 아이템이나, 혹은 사용자가 좋아한 아이템과 유사한 아이템을 추천한다.” 인공지능과 빅데이터 기술이 발전함에 따라 최근 다양한 산업에서 개인별 AI 추천 알고리즘을 활용하고 있고 이는 소비자 선택에 영향을 미치고 있다. 개인별 AI 추천 알고리즘의 원리는 크게 4가지로 구분된다.
· 해피레포트는 다운로드 받은 파일에 문제가 있을 경우(손상된 파일/설명과 다른자료/중복자료 등) 1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하며,자료의 활용에 대한 모든 책임은 다운로드 받은 회원님에게 있습니다.
저작권안내
보고서 내용중의 의견 및 입장은 당사와 무관하며, 그 내용의 진위여부도 당사는 보증하지 않습니다.
보고서의 저작권 및 모든 법적 책임은 등록인에게 있으며, 무단전재 및 재배포를 금합니다.
저작권 문제 발생시 원저작권자의 입장에서 해결해드리고 있습니다. 저작권침해신고 바로가기